$10/12/2020$ MATH 6021 Lecture 6

Plateau's Problem: Given simple closed curve TS IRS, $Recall:$ \exists minimal "surface" Σ with $\partial \Sigma = \Gamma$ which is area- minimizing?

Daylas- Radio Thm :		
Any such T bounds on area-minimizing disk.		
u: D \rightarrow R ³	Area (u) := $\int u_x ^2 u_y ^2 - \langle u_x, u_y \rangle^2 dx dy$	
u= (u, u_4, u_5)	Energy (u) := $\frac{1}{2} \int Uu ^2 dx dy$	
χ^3 = [au such u]	D	
Last time : inf Area (u) = inf Energy (u)		
u \in X _P	ue X _P	ue X _T

Proof of Douglas-Rado Thm

- $Step 1: Given any $u|_{op}: 3D \rightarrow 7$, monotone, onto. We can find$ an energy-minimizing harmonic map u: D → R³ with prescribed boundary value.
	- Note: Solving the Dirichlet problem for Δu^i = 0, u = (u'.u'.u'. which is smooth in D .
- Step 2: Minimize among all boundary parametrizations. Ingredient A: "Normalization" of boundary parametrizations. (Recall: Conf (D) is non-cpt) 3-point Lemma: Consider $\vec{r} := \{u : D \to \mathbb{R}^3 \mid \frac{u}{s.t} \cdot u(\rho_i) = q_i \cdot (t/2, 3) \}$ THEN , $\left\{ u\right\} _{20}:$ 2D \rightarrow T $\left\{ u\in\mathcal{F}\right\}$ is an equi-cts family. Ref: C.M. Lemma 4.1 & 4.14)

Expectedient	B:	Current-Lebesgue Lemma
Suppose	u: D \rightarrow R ³ , $u \in C(\overline{0}) \cap W^{1,1}(D)$. Energy (u) $\leq \frac{R}{2}$.	$u(D)$
Then, $\forall S \in (0, 1)$. $\exists \vartheta \in [S, \sqrt{S}]$ st.	$u(D)$	
Length (u(C _f)) ² $\leq \frac{4\pi R}{-log \delta}$ $\leq \frac{S_{10}}{log \delta}$ $\leq \frac{R}{log \delta}$		

Finally, if $\{u_j\}$ is a minimizing seq. of harmonic maps on D satisfying the 3-point condition, then
 $\frac{A_{2}e_{4}e_{3}}{2}$ subseq. aniform Azela Max Ujlap equi cts ^I subseq uniform Un ^D ²¹¹³³ Harmon Ascoli limit $U_j \rightarrow U_{\infty}$ on 3D principle is the desired energyminimirer

b

Remaining Question: Existence of branch points? $Remark:$ Gulliver $43 : #$ interior branch pts (ie. immersion) Open Question: I boundary branch points?

Remark: The mapping approach can be used to constmet minimal spheres or incompressible minimal surfaces in Riemannian manifolds (c.f. Sacks-Uhlenbeck '81, Schoen-Yau'79)

Some Drawbacks

- . these min surfaces only be immersed, not nec. embedded Cc.f. Meeks-Yau 1980's)
- method only works for 2 dim surfaces (cf. B. White ~1980's)
- need to restrict the topology of the min. Surface "a-priori"

 $Q:$ $\mathsf T_S$ there a more general approach that works in any dimension / codimension & in Riem. setting? E.g.) Consider the following: Let $T \subseteq iR^n$ be a closed $(k-1)$ -dim. embedded submanifold. Problem: Find R -dim surfaces" $\Sigma \subseteq R^n$ with $\partial \Sigma = T$ st. $| \Sigma | = \inf | \tilde{\Sigma} | : \partial \tilde{\Sigma} = T \} =: \alpha$. "Direct Method": Fix a min. seq. $\sum_i 1$ sit $\mathcal{L}_{im}|\Sigma_i| = \alpha$ $Q1$: (Compactuess) \exists subseq. Σ : $\stackrel{?}{\longrightarrow} \Sigma$ in some sense? 3Σ =T? $Q2$: (Lower semi-continuity) $|E| \leq \lim_{i \to \infty} |\Sigma_i|$ $Key: What clear of "surface" $\tilde{\Sigma}$ are we looking at ?$ One Answer: Integral Currents by de Rham. redeser- Fleming Overview of Integral Currents [Ref: L. Simon "Lectures on Geometric Measure Theory"] Key Idea: Want a notion of "surfaces" which allow singularaties. "multiplicities" crientation" The desired objects are "currents": (in R") k dimensional $T = (S, \Theta, \xi)$ integer-rectificule J
I current current subset spt T" multiplicity orientation

where
$$
\cdot S \subseteq \mathbb{R}^n
$$
 is a **Exercise 1**, ie. $\pi^k(S) < +\infty$
and \exists bad point $E \subseteq S$ at $\pi^k(E) = 0$ and
 $S \setminus E \subseteq \bigcup_{d=1}^{\infty} M_a^k$ where $M_a^k : k \text{-dim } C^1$ -embeddod
 $\exists \dots$
 E_0 .)

Key Property 1: We can "integrate" smooth k -forms $\omega \in \Omega_c^k(\mathbb{R}^2)$ ω : 2-form on a k -dim. rectifiable current T in \mathbb{R}^n .

$$
T(\omega) = \int_{S} \omega_{x}(\xi_{x}) \underbrace{\theta \omega_{d} \mu(x)}_{d\mu(x)}
$$

 \mathbf{I} = $\mathbf{\Sigma}$ $\lim_{\alpha\to 0}$

Note: T is a linear functional on $\Omega_{c}^{k}(\mathbb{R}^{n})$ why "Weak topology" i.e. T_i - T_i iff T_i (w) \rightarrow T (w) \rightarrow \rightarrow α \in Ω_i^r (iff

Define:
$$
IM(T) := sup \{T(\omega) : \omega \in \Omega_c^h(R^m), |\omega|_{\omega} \le 1\}
$$

\n $\int_{C} max \ne T$ (= area counting multiplicity)
\nLocally. $M_w(T) = max \ne T$ inside $W \subset R^n$.

Key Property 2:
$$
\exists
$$
 a notion of "boundary" for currents
\n
$$
\begin{array}{c}\n\bigg(1 + 1) - \text{current} \bigg) \\
\bigg(2 + 1) - \text{current} \bigg) \\
\bigg(3 + 1 \bigg) \bigg(1 + 1) - \text{current} \bigg) \\
\bigg(2 + 1 \bigg) \bigg(2 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(2 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 + 1 \bigg) \bigg(3 + 1 \bigg) \\
\bigg(3 +
$$

Definition: If T & OT are integer rectifiable currents then we say that T is an "integral current".

Some Useful Theorems for Integral Currents:

Compactness Theorem: Let $\{T_j\}$ be a seq of k-dim integral currents St $\frac{1}{3}$ (M(T_j) + M_w(2T_j)) < + ∞ V W cc Rⁿ. THEN, \exists k-dim integral current \top and a subseq. $1j \rightarrow 1$ $[$ Actually $2T_j$. \longrightarrow $3T$ since 3 is cts w.r.t weak topology.

Homology Isomorphism Theorem : The boundary operator a on integral currents (recall: $\vec{\sigma}^2 = \sigma$) defines a homology theory isomorphic to the singular homology with Z-coefficients.

Note: Same also holds for other coefficient e.g. \mathbb{Z}_2 .

Federer-Fleming Thm: Given any $(k-1)$ -dim smooth, closed, embedded submfol $T \subseteq \mathbb{R}^n$, then \exists k-dim integral current T in R^n which minimizes mass among all k-dim. integral currents T with 215 as $(k - 1)$ -current $Q:$ How "regular"/"smooth" is the minimizer τ ?